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LEITER TO THE EDITOR 

Extended covariance for the Lagrange equations of motion: 
a geometric analysis 
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Dipanimento di Fisica, Universith di Ferrara, Via Paradiso 12, 44100 Ferrara, Italy 

Received 5 December 1990 

Abtracl. The infinitesimal transformations. which leave the Lagrangian structure of the 
equations of motion unchanged, are intrinsically characterized. A new condition is given 
with which to obtain alternative Lagrangians. 

Classically, the main reason for writing Hamiltonian equations of motion would appear 
to he the fact that with them one can achieve more freedom whenever covariance is 
required under transformations of coordinates. The Lagrange equations are covariant 
under point transformations although relevant properties linked to more general 
transformations have recently been studied with the renewed interest in the geometrical 
analysis of Lagrangian mechanics. For example, by taking only those transformations 
depending also on generalized velocities, it is possible to write a symmetry of the 
Lagrange function for each constant of motion (see the Noether theorem [ 1,211. Using 
more general transformations there are more chances of finding alternative Lagrangians 
[3] and Lagrangian gauge transformations by means of the Dirac theory of 
constraints [4]. 

The aim ofthe present letter is to characterize a class of infinitesimal transformations, 
called ‘Lagrangian’, which generalizes the covariance properties of the Lagrange 
equations. This is done by choosing a different Lagrange function within the ‘new’ set 
of coordinates. We will show how these transformations may he canonical or canonoid, 
Cartan symmetries or simply dynamical symmetries, and how to construct alternative 
Lagrangians. Here, we are dealing with non-degenerate and time-independent 
Lagrangians. Moreover, we will limit ourselves to infinitesimal transformations. Thus 
all necessary and sufficient conditions provided become necessary only whenever finite 
diffeomorphisms have to be analysed. Such conditions prove to be verified by point 
transformations and Cartan symmetries which are known to preserve the structure of 
the Lagrange equations, even at the finite level. 

The tools and notations used herein are those used in the geometrical study of 
classical mechanics (for further details see [7,8]). 

Let Q be the configuration space of the mechanical system and TQ its tangent 
bundle. As is known [ 9 ] ,  one can intrinsically define a one-to-one tensor S on TQ. 
This is called the vertical endomorphism and endows TQ with the structure of an 
integrable, almost tangent manifold. Let re 2( TQ) he the second-order vector field 
associated with Newton’s equations of motion and ds the exterior derivative associated 
with S, whose action on 0-forms is given by 

dsf=dfo S .fe 9 ( T Q ) .  (1) 
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Refemng to the notation proposed by Sarlet et a/ [lo], use will be made of the set 

These vector fields are known in literature as ‘bariation fields of r’ [ 111, or ‘Newtonoid 
vector fields’ [71, or simply ‘non-point transformations’ [12]. The infinitesimal gen- 
erators of point transformations are such that, for any dynamics r, they form a subset 
of 2,- which is closed under Lie brackets. The vector fields of %,. are important though, 
in general, they do not have the properties of a lie algebra, since they carry r into 
another second-order vector field. 

Nonetheless, not all second-order vector fields give rise to a Lagrangian description: 
the so-called ‘inverse problem in the calculus of variations’ is the study of the conditions 
under which this proves possible. Therefore, once a Lagrange function 2’ is assigned, 
one may look for a maximal subset of gr whose elements carry r into another 
Lagrangian dynamics. 

If 2 is non-degenerate 

w g  = -d ds2’ (3) 

is a symplectic form. The Lagrange equations are intrinsically written as 

L,. d s 2 =  d2’ (4) 

or, if one requires explicitly that r be a second-order vector field, as 

irw9 =dEY ( 5 )  

where 

ex:= i,. d z - 2 ’  (6) 

is the Lagrangian energy. Equation (S), thought to be an algebraic equation, admits 
one and only one solution r. 

Let us examine the action of the infinitesimal transformation generated by X E %,. 
on r, w, and E2. Indicating the transformed quantities with r‘, w’ and E’, one may 
ask whether w’ can be derived from a Lagrange function and whether or not r is a 
Lagrangian dynamics for w’.  

A necessary and sufficient condition for the solvability of the inverse problem is 
given in [13]: all vertical subspaces must be Lagrangian for w’  which must, in turn, 
be invariant with respect to r‘ and closed (exact for a global result). These last two 
conditions are identically satisfied under the hypothesis of a transformation of coordin- 
ates and, moreover, w’ is globally exact. Thus, the entire problem is reduced to requiring 
that 

is&(LxwY) = 0 v v, Z E  E( TQ). (7) 

Since w ‘  is exact, if (7) is satisfied, there are no topological obstructions for the global 
existence of a Lagrangian, giving rise to the differential equations associated with r’. 

In fact, since it is easy to verify directly and, as has been observed in [6] ,  once the 
local form of X E 2,. 

J d x = A’,+ (L[-A’)  
J4 J4 
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is given, condition (7) is equivalent to the necessary integrability condition for the 
equations for FE 5( TQ) 

On the other hand, the fibres are vector space and, therefore, condition (7) is also 
sufficient to guarantee the existence of F. 

The partial differential equation (9) can be found in the literature as a condition 
for obtaining alternative Lagrangians from dynamical symmetries, i.e. transformations 
generated by vector fields X E %( TQ) such that 

[x, 1-1 = 0. (mi 
We will return to this point later since, in the present formulation, it is not necessary 
for X to satisfy (10). One can rewrite (9) in an intrinsic form as follows: FE 9(TQ)  
exists such that 

(ds2) 0 LxS+dsF=O. (11) 

This can be verified with a direct calculation recalling that 

J S=dq'@- 
as' 

and then 

At this point it would be useful to introduce the following definition. 

Definition 1.  A vector field X E 2,. is said to be Lagrangian with respect to a Lagrangian 
2 admissible for r, if a function 9~ F(TQ) exists such that 

LXwz = -d dsg. (14) 

The set of such vector fields will be indicated with ZFc%,.. Since w' is necessarily 
exact, condition ( l l ) ,  which is equivalent to (7) ,  is necessary and sufficient for X to 
belong to ZT. 

Proposition. Let r be the second-order dynamics associated with the Lagrange function 
2. Then, X E 2,. is a Lagrangian vector field if and only if F E  F( TQ) exists such that 

(ds2)  0 LxS+dsF= 0 (15) 

and, in such case, one finds 

Lxwx = -d ds(Lx2-  L,-F), 

ProoJ Let us define the following functions 

G = ix d s 2 -  F 

9 = L x 9  - L,- F. 
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By differentiating (17) with respect to r, and by taking both (2) and (4) into account, 
one obtains 

9= L, G (19) 
which, along with the relationship 

L l ( d C - i x o , ) = d L ~ G - i I ~ , x 1 o ,  (20) 

i [x . I . Iwy= L,(dG-  i,,.wy)-d2'. (21) 

Lx ds2'-dF = d G  - ixorr. (22) 
if hypothesis (is) hoids true, the ieft-hand side of (iij is a semibasic i-form. i n  

(23) 

provides the following: 
- 

The exterior derivative of (17) implies 

fact, keeping in mind that 

L,S 0 s = -s 0 L xs 
one has 

(Lx d s 2 - d F )  0 S - (d&o L,S-dsF=O. 

Thus 

isy(dG - ixws) = 0 

S[SY,  1-1 = SY 

v Y E E( TQ) 
and, moreover, since 

one also has 

ilsy,II(dG-iyoy)=iy(dG-i,w,) VY E Z'(TQ). (27) 

Finally, by contracting (21) with respect to SY and using (27), it follows that 

I iy(dG - ixoy) = Lsy9 v Y E E( TQ). (28) 

Therefore, 

dG - i,w, = dsg (29) 

and 

Lxwp = -d ds2. (30) 

The converse is trivial: whenever (30) holds true (7) is satisfied. U 

In the light of these simple calculations some interesting comments may be made. First 
of all, looking at ( l l ) ,  it becomes evident that F is defined up to an arbitrary function 
a E 9(Q) and that G is defined as well. Then 2 is defined, except for the so-called 
gauge function L,-a. This indetermination is trivial and will be neglected from this 
point on. For example, looking at (30). we can say that X generates a canonical 
transformation (see [14]) if and only if 9 does not depend on the velocities, thus 
omitting and gauge function. 

On the other hand, substituting (29) in (21) one gets 

i[x.llw,= L r d s 9 - d g  (31) 
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whose right-hand side, compared with (4), shows that 2 is an alternative Lagrangian 
for r if and only if X is a symmetry of r. However, it is possible to ease up this 
condition by choosing the alternative Lagrangian in a different way, as will now be 
demonstrated. 

In order to do so we must recall the definition of canonoid vector fields [ 141. 

Definition 2. A vector field Z E E( TQ)  is said to be canonoid with respect to r if 
i,.w, = dE, (32) 

in v o 1 v e s 

i,.Lfl,=dC C e W T Q )  (33) 

i.e. is bi-Hamiltonian. 

If Z is canonoid with respect to any Hamiltonian vector field (the term 'Hamiltonian' 
being referred to the symplectic form w y )  it generates a canonical transformation; that 
is to say 

L e w r  = 0. (34) 

If X E 4. is a canonical transformation, condition (7)  is trivially satisfied and X E 2':. 
One immediately sees that 

i,x.rlwy = dLx E9 (35) 

and, therefore, as the left-hand side of (35) is semibasic because of S [ X ,  r] = 0, one finds 

dsLx E,=O. (36) 

Since the right-hand side of (29) is zero, contracting with respect to r and using 
( 5 )  we also find the useful relationship 

- 
2'= LrG = -LxEy. (37) ' 

P I . .  :c ":-.LA _ ^ _ ^ _  -.-.. ^ C ^  ^ ^ _ ^ _ : " - a  ._^^^C^ __^. :-.. ^_-I ̂̂ .:^C^^ ,,L, .I.^_ Lurlvclscly, 11 A Lb LIIG gCmc,aw, U1 d C d l l U l l l C d l  LL' lIISIUIIIIdIIUII  dll" S d l l S I 1 G >  ,,",, LllCl l  

X belongs to Z,.. By requiring less particular features, we may study canonoid 
transformations in TQ. 

Let us suppose that X E 2,. is canonoid with respect to r: from (33) it follows that 
[X, I'] is (globally) Hamiltonian. I n  fact, 

~ [ X , ~ I W Z  = d g  (38) 

with g = L,&- C. Since S [ X ,  r] =0, one obtains 

O=( i Ix , r lwu)~S=dsg .  (39) 

-, I . . . ( d A  >->-, -&'= 0 (40) 

Moreover, if X E E:, from (31) one gets 

where g=P+g proves to be an alternative Lagrangian. Any symmetry X of the 
dynamics r is canonoid (with C = L,E) although the converse is not true. Therefore, 
together equations ( 1 5 )  and (33) constitute a less restrictive condition than the one 
proposed in [5] to guarantee the existence of alternative Lagrangians. 
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The alternative Lagrangians obtained from canonoid transformations are not 

Let Q = W 2  and let 
necessarily trivial, as may he seen from the following example. 

he the dynamics of the bidimensional isotropic harmonic oscillator. One has, as an 
admissible Lagrangian 

(42) 2==I( ' 3 . t  

A'= (41)2+q'+f(91)2 (43a) 

A'= (4')3+ q'+(92)2q2+ q2. (436) 

(44) ~ = f ( 4 1 ) 3 + 3 (  .2 4 2 2  . 2 2  
4 9 ) +4'q2+f(s  ) (9  ) 

i [x . r10~ = d(f(9')'). (45) 

2 9 9 -9'9') .  

Let us construct the infinitesimal transformation given in (8) with 

X is a Lagrangian vector field, with 

satisfying (15), therefore 

X is also a canonoid vector field and gives rise to the alternative Lagrangian 

9 = ( 4 2 ) 2 -  ( 9 7 -  Lr(919Z+i(92)4) (46) 

which is not trivial since the difference between 2' and 2 is not a gauge function Lrf; 
with ft 5(Q): they are not equivalent Lagrangians (see [9]). 

Finally, we can analyse the properties of the Cartan symmetries, the definition of 
which, as given in [l] and in [SI, proves equivalent to the following: a function 
FE 9( TQ) exists such that 

( d s 2 ) ~ L x S + d s F = 0  (47a) 

Lx2? = L,.? (47b) 

9 = 0 .  (48) 

or simply: X E 2; is such that 

In such a case the proof of the proposition is just the proof of the Noether theorem: 
(19), (31) and (29) respectively, ensure that G is a constant of motion, X is a dynamical 
symmetry and, moreover, generates a canonical transformation. 

Now, some observations must be made regarding the transformed equations of 
motion. From (18) it is easy to understand that the admissible Lagrangian for r' is 
not 2' but Y- LrF. If we take a passive point of view we can see that, if we write 
the same equations of motion into the new set of coordinates, they need a different 
Lagrangian. When we are dealing with a Cartan symmetry, the equations are more 
than covariant: they are invariant and the new Lagrangian has the same functional 
form as the old one. Nonetheless, even in this case, the new Lagrangian is different 
once evaluated in the same point of the space. 

One gets the same Lagrange function by taking point transformations, since they 
are always Lagrangian with F = 0. The consequences of a Lagrangian transformation 
in the phase space T*Q are simple to analyse. Whenever the Lagrange function is not 
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invariant one must, in general, modify the Legendre mapping by adding the fibre 
derivative [7] F ( 2 ) .  The modified mapping carries the new Lagrange equations into 
new Hamilton equations. The latter are linked to the old ones by means of the canonical 
transformation generated by the Hamiltonian field X ,  E E( T*Q) such that 

In the particular case in which X E %:is canonical in TQ, since 
mapping does not change and 

F( Q ) ,  the Legendre 

x, = F ( 9 ) * X .  (51) 

The set of infinitesimal generators maintaining the Lagrangian structure of the 
equations of motion has been defined on TQ; these are called 'Lagrangian transforma- 
tions'. It has been underlined that point transformations and Cartan symmetries are 
simply subsets of this set, at least at the infinitesimal level. The geometrical features 
of the Lagrangian transformations have heen demonstrated, greater d&th being given 
to their relationships with the inverse problem and with the problem of alternative 
Lagrangian descriptions. Moreover, emphasis has been given to a one-to-one correspon- 
dence between Lagrangian transformations on TQ and canonical transformations on 
T* Q. 

The analysis brought to light in the present letter constitutes a useful tool for 
understanding the conditions under which the vector fields of generate one- 
parameter groups; that is to say their properties are maintained in finite transformations 
as well. 
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